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A novel method for quantitative structure-activity relationship (QSAR) analysis is presented.
The method, which does not assume any particular functional form for the QSAR, develops
nonlinear relationships between parameters describing a set of molecules and the activity of
the molecules. For the QSAR of the inhibition of Escherichia coli dihydrofolate reductase by
2,4-diamino-5-(substituted benzyl)pyrimidines, the method compares favorably to other
nonlinear methods. Cross-validation trials demonstrate that the predictive ability is as accurate
as other methods, and the method is simpler and faster than neural network and machine-
learning methods. Consequently, its implementation is much easier, and interpretation of the
generated QSAR is more straightforward.

Introduction

When the absence of detailed structural data about
a drug-substrate complex precludes the application of
structure-based drug design, insights about binding
often come from the development of a quantitative
structure-activity relationship (QSAR). Recent years
have seen a flurry of novel QSAR algorithms that seek
to go beyond the linear and quadratic models introduced
and popularized by Hansch.1,2 In particular, there have
been many applications of neural networks to QSAR
analysis.3-13 Machine-learning techniques have also
been developed.14-17 One of the primary goals of these
studies (which have been reviewed recently18) is to
capture subtle relationships that elude more traditional
techniques. Thus, particular dependencies, such as
linear or quadratic, are usually not assumed, and,
instead, more complex nonlinear relationships are
developed. The development of these nonlinear rela-
tionships involves, in the case of neural networks,
searching a weight-space that is of much higher dimen-
sionality than the space of the QSAR problem itself. For
example, for a typical QSAR there might be five
parameters considered to be of interest, and the corre-
sponding neural network developed to model this QSAR
would typically have 30 or more weights. Similarly,
some machine-learning techniques also require the
search of high-dimensional spaces, which are too large
to search exhaustively.
In this work, we present an algorithm which develops

nonlinear relationships in a well-defined, simple fash-
ion, working in the parameter space of interest. If a
molecule is characterized by its activity and p proper-
ties, and there are N molecules in the data set, the
algorithm generates a surface of activity as a function
of p in a (p + 1)-dimensional space from the N points.
In this particular application, we have been able to
reduce the number of properties, so that p ) 2, and the
generated surface may be readily visualized.
We have applied the method to the QSAR of the

inhibition of dihydrofolate reductase (DHFR) by pyri-

midines. DHFR plays a key role in the synthesis of
DNA. DHFR from different organisms may be inhibited
by the same molecule to differing degrees, and this
differential inhibition makes DHFR inhibitors candi-
dates as antibacterial agents. The inhibition of Escheri-
chia coli DHFR by trimethoprim and its analogues,
benzylpyrimidines with substituents R1, R2, and R3 at

the 3-, 4-, and 5-positions (I), has been studied exten-
sively by X-ray crystallography,19,20 and activity data
have been measured for 74 related molecules.21-24

These data have been used as a test case for a variety
of QSAR algorithms, including neural networks and
machine-learning applications.4,8,15,21,22,25 These previ-
ous studies are used as a benchmark for the work
presented here.
In this work, we describe a method for generating

nonlinear QSARs. The predictive accuracy of the method
is assessed using a cross-validation trial on a compara-
tively large and well-studied data set. This is compared
to the reported accuracies for several other methods.
The simplicity of the method is self-evident and allows
facile interpretation of the generated QSAR. An obvi-
ous, but previously unremarked upon, feature of the
data set allows a reduction in the dimensionality of the
problem. This kind of feature may be present in other
QSAR data. The focus of this work, however, is not on
variable selection or reduction, both of which are key
problems, but on the efficient generation of nonlinear
QSARs given the variables.
The advent of combinatorial chemistry technolo-

gies26,27 provides an additional impetus for the develop-
ment of fast and accurate QSARs, with the goal of
directing the robotic synthesis of compounds in real
time. The ability to synthesize and assay large numbers
of compounds will be best exploited if one can generate
and utilize meaningful QSARs with sufficient speed and
accuracy. The necessity of speed and the large numbers
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Table 1. Properties and Activities of the 74 Pyrimidines Used in This Studya

activity

no. substituents measd pred MR5′ MR3′ MR4 π3

Set 1
11 4-F 6.35 6.23 0.10 0.10 0.09 0.00
31 4-NHCOCH3 6.89 6.37 0.10 0.10 1.49 0.00
34 3-Br 6.96 6.92 0.10 0.79 0.10 0.86
42 3,5-(OCH3)2, 4-(CH2)2OCH3 8.35 8.26 0.79 0.79 1.93 0.00
20 3-OCH2CONH2 6.57 6.80 0.10 0.79 0.10 -1.37
24 3-CH3 6.70 6.98 0.10 0.57 0.10 0.52
30 4-O(CH2)3CH3 6.89 6.40 0.10 0.10 2.17 0.00
23 3-Cl 6.65 6.99 0.10 0.60 0.10 0.67
37 3-CF3 7.02 6.99 0.10 0.79 0.10 0.50
08 3-CH2OH 6.28 6.80 0.10 0.72 0.10 -1.03
39 3-I 7.23 6.81 0.10 0.79 0.10 1.12

Set 2
16 3-OH 6.47 6.42 0.10 0.28 0.10 0.28
54 3,5-Cl2, 4-NH2 8.87 8.07 0.60 0.60 0.54 0.71
43 3,5-(OCH3)2 8.38 8.35 0.79 0.79 0.10 -0.02
19 3-CH2O(CH2)3CH3 6.55 6.91 0.10 0.79 0.10 1.30
22 3-CH2OCH3 6.59 6.65 0.10 0.79 0.10 -0.78
10 3,5-(CH2OH)2 6.31 8.35 0.72 0.72 0.10 -1.03
41 3,4-(OCH3)2 7.72 6.86 0.10 0.79 0.79 -0.02
33 3-OCH3 6.93 6.71 0.10 0.79 0.10 -0.02
35 3-NO2, 4-NHCOCH3 6.97 7.03 0.10 0.74 1.49 -0.28
01 3,5-(OH)2 3.04 6.39 0.28 0.28 0.10 -0.67
09 4-NH2 6.30 6.35 0.10 0.10 0.54 0.00

Set 3
14 4-Cl 6.45 6.24 0.10 0.10 0.60 0.10
03 4-O(CH2)5CH3 6.07 6.50 0.10 0.10 3.07 0.00
55 3-Cl, 4-NH2, 5-CH3 8.87 7.98 0.57 0.60 0.54 0.71
06 3-F 6.23 6.17 0.10 0.09 0.10 0.23
04 H 6.18 6.18 0.10 0.10 0.10 0.00
47 3,5-(OCH3)2, 4-O(CH2)5CH3 7.87 8.21 0.79 0.79 0.79 -0.02
28 3-O(CH2)3CH3 6.82 7.04 0.10 0.79 0.10 1.55
25 4-N(CH3)2 6.78 6.40 0.10 0.10 1.56 0.00
27 4-OCH3 6.82 6.20 0.10 0.10 0.79 0.00
50 3,5-(OCH3)2, 4-CH3 8.57 8.34 0.79 0.79 0.57 -0.02
07 3-O(CH2)7CH3 6.25 6.84 0.10 0.79 0.10 3.71

Set 4
51 3,5-I2, 4-OCH3 8.82 8.61 0.79 0.79 0.79 1.12
49 3,5-(OCH3)2, 4-OCH2C6H5 8.42 8.20 0.79 0.79 0.79 -0.02
53 3,5-Br2, 4-NH2 8.85 7.82 0.79 0.79 0.54 0.86
46 3,5-(CH3)2, 4-OCH3 7.74 8.50 0.57 0.57 0.79 0.56
12 3-O(CH2)6CH3 6.39 6.74 0.10 0.79 0.10 3.17
21 4-OCF3 6.57 6.25 0.10 0.10 0.79 0.00
44 3,4,5-(OCH3)3 8.87 8.20 0.79 0.79 0.79 -0.02
52 3,5-I2, 4-OH 8.82 8.68 0.79 0.79 0.28 1.12
38 3,4-(COH2CH2OCH3)2 7.22 7.05 0.10 0.79 1.93 -0.40
15 3,4-(OH)2 6.46 6.21 0.10 0.28 0.28 -0.67
18 3-OCH2CH2OCH3 6.53 6.81 0.10 0.79 0.10 -0.40

Set 5
36 3-OCH2C6H5 6.99 6.78 0.10 0.79 0.10 1.66
45 3,5-(CH3)2, 4-OH 7.56 8.62 0.57 0.57 0.28 0.56
26 4-Br 6.82 6.36 0.10 0.10 0.89 0.00
32 3-OSO2CH3 6.92 6.69 0.10 0.79 0.10 -0.88
02 4-O(CH2)6CH3 5.60 6.27 0.10 0.10 0.79 0.00
17 4-CH3 6.48 6.48 0.10 0.10 0.57 0.00
40 3-CF3, 4-OCH3 7.69 6.91 0.10 0.50 0.79 0.88
13 4-OCH2CH2OCH3 6.40 6.39 0.10 0.10 0.93 0.00
48 3,5-(OCH3)2, 4-O(CH2)7CH3 7.87 8.36 0.79 0.79 0.79 -0.02
29 3-O(CH2)5CH3 6.86 6.60 0.10 0.79 0.10 2.63
05 4-NO2 6.20 6.23 0.10 0.10 0.74 0.00

Set 6
56 4-OH 6.45 6.30 0.10 0.10 0.29 0.00
57 4-OSO2CH3 6.60 6.48 0.10 0.10 1.70 0.00
58 3-OH, 4-OCH3 6.84 6.17 0.10 0.28 0.79 -0.67
59 4-OCH2C6H5 6.89 6.46 0.10 0.10 3.17 0.00
60 4-C6H5 6.93 6.52 0.10 0.10 2.54 0.00
61 3,5-(CH3)2 7.04 8.52 0.57 0.57 0.10 0.56
62 3,4-(OCH2O)2 7.13 6.28 0.10 0.45 0.45 0.00
63 3-O(CH3)7OCH3, 4-OCH3 7.16 6.60 0.10 0.79 0.88 3.71
64 3,5-(OCH3)2, 4-O(CH3)7OCH3 7.20 8.29 0.79 0.79 3.97 -0.02
65 3,5-OC3H7 7.41 8.60 0.79 0.79 0.10 1.05
66 3-OCH3, 4-CH2C6H5 7.53 7.12 0.10 0.79 3.17 -0.02
67 3-OCH3, 4-OH 7.54 6.85 0.10 0.79 0.28 -0.02
68 3-OCH2C6H5, 4-OCH3 7.66 7.21 0.10 0.79 0.79 1.27
69 3,5-(OCH3)2, 4-N(CH3)2 7.71 8.30 0.79 0.79 1.56 -0.02
70 3-OCH3, 4-O(CH2)2OCH3 7.77 7.12 0.10 0.79 1.93 -0.02
71 3-OSO2CH3, 4-OCH3 7.80 6.81 0.10 0.79 0.79 -0.88
72 3,4,5-(CH2CH3)3 7.82 8.48 0.79 0.79 1.03 0.86
73 3-OCH3, 4-OSO2CH3 7.94 7.09 0.10 0.79 1.70 -0.02
74 3,5-(OCH3)2, 4-Br 8.18 8.35 0.79 0.79 0.89 -0.02

a The index numbers are those given in previous work.8
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of compounds may preclude the time-consuming com-
putation of 3-dimensional properties of the molecules,
and so initially we focus on more traditional QSAR
parameters.

Method
A QSAR relates p properties to activity. This defines a (p

+ 1)-dimensional space. A QSAR is a surface in this space;
linear QSARs are planes in this space, and quadratic QSARs
are parabolic surfaces. We generate a nonlinear surface
through the following prescription. A grid is defined in the
p-dimensional property space. The fineness of the grid is
arbitrary; in this study 32 grid points in each dimension were
used. At each grid point, g, the activity, A[g], is a distance-
weighted sum of the activities of the molecules in the data
set:

A[g] ) W∑
i

N Ai

di
(1)

where

di ) ∑
j

p

(pij - pgi)
2 (2)

and

W ) ∑
i

N

di (3)

W is a normalization constant, N is the number of molecules,
d is the square of the Euclidean distance, p is the number of
properties, pij is the value of the jth property of molecule i,
and pgj is the value of the jth property at grid point g. In the
case when the grid point is at the identical location of a
molecule, that molecule is excluded from the sum, because
otherwise d, on the right-hand side of eq 1, is zero and A[g]

would not be defined. In fact, any molecule very close (defined
as d < 0.05) to a grid point is excluded from the sum to
calculate the activity at that grid point. While this is com-
putationally convenient, it also provides a mechanism for
generalization, in that the computed surface is not overly
sensitive to the idiosyncrasies of individual data points.
Thus, the activity at any point in property space is assumed

to be similar to the activity of nearby molecules. The distance-
weighting means that only molecules near to a particular point
influence the computed activity at that point. Functional
forms other than the one in eq 1 could also be used, thus
altering the form of the distance-weighting. We show later
that the predictive accuracy is relatively insensitive to the
functional form, as long as the underlying mathematical model
that molecules with similar properties have similar activities
is retained. We find that the details of similarity, in terms of
the precise values of the weights in the distance-weighted sum,
do not overly influence the performance of the algorithm.
Clearly, the concept of the distance-weighted sum is not novel;
however, to the best of our knowledge, its application to QSAR
analysis is. Combined with a reduction in the dimensionality
of the problem, the method provides a powerful tool for QSAR
analysis.
The data used in this study are 74 2,4-diamino-5-(substi-

tuted benzyl)pyrimdines. The properties of the substituents
of these molecules and their activities were taken from the
literature.21-24 The activity data have been reported as
log(1/Ki), where Ki is the experimentally measured inhibition
constant. These data come from two different laboratories
where different assay methods were employed. Ideally, the
activity data would all come from the same assay performed
in the same laboratory. However, as the focus of this work is
to assess the performance of a novel method, it is essential to
use data which have been studied by several nonlinear
methods. Given that these data have been used in several
previous studies,8,15,25 the identical data were used in this study
to provide meaningful comparisons. Furthermore, the two
different assays are in acceptable agreement on a number of

overlapping data points. The chemical properties of the
substituents at the 3-, 4-, and 5- positions are the hydrophobic
parameter, π, which is derived from the ratio of the partition
coefficients in 1-octanol and water, and the molar refractivity,
MR, which is related to the size and the polarizability of the
substituent. These MR values were rescaled in the earlier
work of Hansch and co-workers,21,28 so no further rescaling has
been introduced here. In a distance-weighted approach, such
as ours, clearly the scaling of different dimensions is impor-
tant. We do not need to address this issue for the data in this
study, and a more general discussion of rescaling is not within
the scope of the work presented here.
These data were divided into five sets of 11 for a cross-

validation trial and a separate set of 19, as shown in Table 1.
Fivefold cross-validation was performed to assess predictive
accuracy. Set 6 was only used as an additional test set. In
the first split of the data, set 1 was the test set and sets 2-5
comprised the training set; in the second split, set 2 was the
test set and sets 1 and 3-5 comprised the training set, and
similarly for the other splits in the cross-validation trial. Each
molecule is described by four parameters: MR5′, MR3′, MR4,
and π3. The prime indicates a truncation of the range of the
parameter as introduced by Hansch21,28 (and discussed later
in this section). For consistency, molecules that are singly
substituted at the meta-position are treated as 3-substituted
molecules, with MR3′ and π3 assigned according to the sub-
stituent and MR5′ assigned for hydrogen.
As presented in Table 1, the QSAR is a 4-dimensional

problem. While a 5-dimensional surface can be generated with
ease using the method described above, a 3-dimensional
surface is clearly more easily visualized and potentially more
insightful. Furthermore, working in a lower dimensional space
has computational and statistical advantages. These benefits
and the identification of collinear parameters are motivations
for techniques such as principal components analysis,29 in
which a smaller number of new parameters are developed from
linear combinations of the original parameters. However, in
the data under study here, a simpler means of reducing the
dimensionality was suggested by inspection of the data.

Figure 1. Distribution of the parameters used to describe 74
pyrimidines: (a) MR5′sthe truncated molar refractivity of the
substituent at the 5-position, (b) MR3′sthe truncated molar
refractivity of the substituent at the 3-position, (c) MR4sthe
molar refractivity of the substituent at the 4-position, and (d)
π3sthe hydrophobicity of the substituent at the 3-position.
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In Figure 1, the distributions of the properties of the
substituents are shown. It can be seen that molecules in the
data set predominantly have only one of two values for the
parameters MR3′ and MR5′, either 0.10 or 0.79. This arises
for two reasons. Firstly, only a small number of different
substituents appear in the data: most common are hydrogen
and the methoxy group. Secondly, these parameters are
truncated MR values, which means that any value above 0.79
has been reported as 0.79. This arose from an earlier QSAR
analysis, in which it was concluded that larger substituents
with greater values did not appear to be more effective
inhibitors. As is evident from Table 2, in which all the
pairwise distributions of parameters are summarized, the data
fall into three classes: molecules with small 3- and 5-substit-
uents (MR3′ ) MR5′ ) 0.10), molecules with a large 3-substi-
tuted and a small 5-substituent (MR3′ ) 0.79, MR5′ ) 0.10),
and molecules with bulky 3- and 5-substituents (MR3′ ) MR5′
) 0.79). To accommodate the small number of molecules that
do not exactly adhere to the above classification, we have
defined the three classes as MR3′ < 0.5, MR5′ < 0.5; MR3′ g
0.5, MR5′ < 0.5; and MR3′ g 0.5, MR5′ g 0.5.
Thus, we have reduced the 4-dimensional problem to three

2-dimensional problems. While this is indeed convenient, it
is not merely a matter of convenience. There are very little
data in the region between the extremes of MR3′ and MR5′,
and interpolation in this region by any QSAR algorithm would
have to be viewed with skepticism. While this observation
may be obvious, it does not appear to have been considered in
previous analyses of these data.
In the cross-validation trials, the training data were used

to calculate three surfaces of activity as a function of MR4 and
π3, one surface for each of the three combinations of MR3′ and
MR5′ described above. The activity of the test data was
predicted as the activity at the nearest grid point to the test
data point, for the surface corresponding to the MR3′ and MR5′
values of the test molecule.

Results

Table 3 shows that the predictive accuracy of the
method, as assessed by cross-validation and on an
independent test set of 19 molecules, compares favorably
to other methods. The cross-validated Spearman rank
correlation coefficient between the predicted and mea-
sured activities is 0.68. The method performs as well
as any in the cross-validation trial, which gives a more
reliable estimate of predictive accuracy than the inde-
pendent trial, because the number of data points is
greater (55 compared to 19). On the independent test
set, two of the other methods perform better, but the
difference is not statistically significant. For the train-
ing data, the mean cross-validated Spearman rank
correlation coefficient between the predicted and mea-
sured activities is 0.80. This is lower than for the other
methods, but it is performance on unseen test data not
on training data that is of primary interest.

In the cross-validation trial, two molecules are pre-
dicted to have much higher activities than their mea-
sured activities. These are the 3,5-(OH)2- and 3,5-
(CH2OH)2-substituted molecules, whose predicted
activities are 6.39 and 8.35, respectively, compared to
their measured activities of 3.04 and 6.31. Both these
molecules have been identified as anomalies in previous
studies.21,28 It appears that the presence of two hy-
droxyl groups in the active site is unfavorable, much
more so than one or two methoxy groups, and that the
description of substituents by MR and π variables does
not fully capture the pertinent interactions. Excluding
these two outliers, the mean absolute error in the
predicted activity of the other molecules in the cross-
validation trial is 0.34.
In Figure 2 we show surfaces generated from the

entire data set. A number of features are apparent.
Activity tends to increase with the molar refractivity of
the 3- and 5-substituents. If both substituents have low
molar refractivities (Figure 2a), the mean activity is 6.16
(standard deviation, σ ) 1.36; size of sample, n ) 25);
if MR3′ is large and MR5′ is small (Figure 2b), the mean
activity is 7.04 (σ ) 0.49; n ) 28); if both substituents
have large molar refractivities (Figure 2c), the mean
activity increases to 8.07 (σ ) 0.70; n ) 21). The
dependence of the activity on π3 and MR4 varies

Table 2. Distribution of Pairs of Parameters Used To Describe the 74 Pyrimidines

parameters

no.
diff
pairs

most
common pair

(no. occurrences)

2nd most
common pair

(no. occurrences)

3rd most
common pair

(no. occurrences)

{MR5′, MR3′} 16 {0.10, 0.79} {0.10, 0.10} {0.79, 0.79}
(23) (19) (15)

{MR5′, MR4} 38 {0.10, 0.10} {0.10, 0.79} {0.79, 0.79}
(20) (8) (5)

{MR5′, π3} 35 {0.10, 0.00} {0.79, -0.02} {0.10, -0.02}
(19) (9) (6)

{MR3′, MR4} 43 {0.79, 0.10} {0.79, 0.79} {0.79, 1.93}
(16) (8) (3)

{MR3′, π3} 30 {0.10, 0.00} {0.79, -0.02} {0.79, 0.12}
(18) (15) (3)

{MR4, π3} 65 {0.79, -0.02} {0.79, 0.00} {0.54, 0.71}
(5) (3) (2)

Table 3. Comparison of the Predictive Accuracy of the
Nonlinear QSAR with the Accuracies of Other Methods, as
Reported in the Literature25

mean cross-validation
performancea (σ)

method training data test data

mean
independent
test set

performance (σ)

multiple linear
regressionb

0.89 (0.05) 0.65 (0.10) 0.51 (0.15)

nearest neighborc 1.00 (0.00) 0.55 (0.17) 0.50 (0.07)
neural networkd 0.89 (0.04) 0.68 (0.12) 0.63 (0.18)
M5e 0.82 (0.09) 0.62 (0.26) 0.59 (0.07)
CARTf 0.98 (0.00) 0.50 (0.29) 0.54 (0.16)
GOLEMg 0.95 (0.01) 0.68 (0.11) 0.74 (0.10)
this work:
nonlinear QSAR

0.80 (0.02) 0.68 (0.16) 0.59 (0.01)

a Accuracy is measured by the Spearman rank correlation
coefficient between the actual and predicted activities of the test
data. All accuracies were calculated by 5-fold cross-validation on
the same data. The means and standard deviations were com-
puted from the five cross-validation trials. b The multiple linear
regression was performed using the variables and their squares.
c The nearest neighbor algorithm assigns to the test molecule the
activity of the nearest training set molecule. d The neural network
used back-propagation learning with a speed-up algorithm.8 e M5
is a machine-learning method based on a combination of regression
trees and instance-based learning.30 f Classification and regression
trees, CART, is a collection of binary decision tree-growing
algorithms.31 g GOLEM is a machine-learning method based on
inductive logic programming.8,15,32
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significantly for these three different subsets of mol-
ecules. This is an indication of the importance of cross-
terms in the QSAR. For a particular substituent, the
properties required to give high activity depend on the
properties of the other substituents. This is in contrast
to a typical linear QSAR, where each property can
usually be independently optimized.
For molecules with 3- and 5-substituents with small

molar refractivities, activity increases fairly uniformly
with π3 and MR4, although a high MR4 value on its own
is not sufficient for high activity. Low π3 gives low
activity. The highest activity for these molecules is
log(1/Ki) ) 7.13. Molecules with high MR3′ but small
MR5′ have a different QSAR. Low π3 or high MR4 leads
to low activity. The most active molecules have low to
moderate MR4 and moderate to high π3. The most
active molecules are those in which both the 3- and
5-substituents have high molar refractivities. Of these,
the most active molecules have low π3 values and high
MR4 values.
As alluded to earlier, many functional forms may be

used in the distance-weighted sum in eq 1. We have
explored a number of these through a generalization of
eq 1:

A[g] ) Wck∑
i

N

Ai( 1

cdk
+ c -

1

c) (4)

where Wck is the modified normalization constant, k

changes the exponent of the distance, so k ) 1 gives
the squared distance, k ) 0.5 gives the distance itself,
and c defines the slope of the weighting curve, i.e., how
rapidly molecules away from the grid point are es-
sentially ignored. Equation 1 is recovered if c ) k ) 1.
Table 4 shows that the predictive ability of the method
is relatively insensitive to these parameters. As might
be expected, the predictive ability decreases as more
extreme functional forms are adopted for the distance-
weighting, where either too many or too few near
neighbors are allowed to contribute with significant
weights.

Conclusions

The method we have presented for nonlinear QSAR
analysis has the following advantages: (i) generalitysno

Figure 2. Nonlinear QSARs for (a) molecules with low MR3′ and MR5′, (b) molecules with high MR3′ and low MR5′, and (c)
molecule with high MR3′ and MR5′. The respective activities are denoted as activity-00, activity-01, and activity-11. In each
plot, the activities are color-coded, with red indicating high activity (within the range of the particular plot) and blue indicating
low activity. Projections of the 3-dimensional plots are shown in the lower portion of the figure. The plots are shown as 32 × 32
grids, as generated by the method. In each plot, the ranges of π3 and MR4 have been divided into 32 equal divisions. The actual
range of π3 is (a) -0.67 to 0.28, (b) -1.37 to 3.71, and (c) -1.03 to 1.12. The actual range of MR4 is (a) 0.09 to 3.17, (b) 0.10 to
3.17, and (c) 0.10 to 3.97.

Table 4. Dependence of the Predictive Accuracy on Different
Functional Formsa

c

k 0.1 0.5 1 2 5

0.25 0.49 0.55 0.68 0.70 0.70
0.5 0.47 0.56 0.69 0.70 0.70
1 0.59 0.46 0.68 0.66 0.65
2 0.67 0.58 0.66 0.63 0.61
4 0.57 0.61 0.63 0.61 0.62
a The 5-fold cross-validation test set performance is given as a

function of the parameters c and k in eq 4.
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particular dependence of activity on properties is as-
sumed; (ii) simplicitysespecially compared to neural
networks or machine-learning algorithms; (iii)
accuracysit is as accurate as other methods, as assessed
by cross-validation; (iv) speedsthe 5-fold cross-valida-
tion trial took 3 cpu s on a SGI Indy workstation (with
a 134 MHzMIPS R4600 chip); (v) low dimensionalitysit
works in the space of the QSAR parameters; and (vi)
ease of interpretationsthe 3-dimensional color-coded
surfaces are readily visualized.
Furthermore, the results are insensitive to small

changes in the definition of the method. There are a
couple of mild qualifications to these conclusions. Firstly,
while the nonlinear QSAR is accurate, it is not more
accurate than the other methods it was compared to,
and the QSAR of the inhibition of DHFR by pyrimidines
is still not fully understood. Nevertheless, our study
has provided further insight into the QSAR. Studies
of other QSARs are currently underway to provide
further assessment of the method. Secondly, the ease
of interpretation provided by the 3-dimensional surfaces
is substantially reduced in higher dimensions, although
one could look at projections on a 3-dimensional space.
The primary aim of this work was to present a method

for developing nonlinear QSARs. The data in this study
were chosen as a well-studied test case. However, as
well as illustrating the performance of the nonlinear
QSAR, our study has detected important features of the
data. In particular, we note that the data fall into three
distinct classes of molecules with different mean activi-
ties. This allowed the QSAR to be reduced to three
2-dimensional problems, which may be readily visual-
ized.
For very large dimensional problems, the algorithm

will require some modification. The computational
effort for the generation of large-dimensional surfaces
grows exponentially, although activities can be com-
puted at points corresponding to test data, without
computing the entire surface. However, careful selec-
tion of parameters and the judicious reduction of the
parameter space by, for example, principal component
analysis should in most QSARs obviate the need to work
in a very high dimensional space. This is, in general,
desirable for computational efficiency, statistical sig-
nificance, and ease of interpretation.
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